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nonreciprocal optical IC devices possessing various func-

tions would be constructed by using the perturbed systems

treated in the present paper.

V. CONCLUSION

The coupled optical waveguides, consisting of two iso-

tropic dielectric slab waveguides coupled through aniso-

tropic or gyrotropic materials inserted between them, have

been treated theoretically in detail. It has been found that

the AL- and Af’-perturbation systems show the reciprocal

mode conversion, while the GL- and GP-perturbation sys-

tems possess the property of nonreciprocal mode conversion,

and the GE-perturbation system causes nonreciprocal phase

shift for the TMO mode, whereas the AE-perturbation

system shows no influence upon both TEO and TMO modes.

As an example of application of these perturbed systems,

the nonreciprocal optical IC mode converter has been pro-

posed, and the numerical design example of the optical IC

circulator has been given. This circulator requires no mode

separators at both input and output ports. This circulator

can also be utilized as an isolator without using mode filters

at both input and output ports. In order to realize these

devices, the progress of the fabrication techniques, together

with the development of magnetooptic materials which

possess a large Faraday effect, is required.
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Linear Power Responses of an Optical Fiber
CHARLES VASSALLO

Abstract—It is known that an optical fiber hehaves linearly in terms of

power when the modulation frequeney is smaller than the spectrum width
of the light source. In order to calculate the impulse or frequency power
responses with a modal calculation, it is shown that the powers carried
by tbe different modes are independent in usual cases. Different formulas

are proposed for the linear responses when there is no mode coupling,
and the corresponding validity conditions are given.

I. INTRODUCTION

A
DESIRABLE characteristic of any transmission

system is the linear relation between the output and

input variables. In the case of transmission through optical

fibers, the output variable is the current generated by the

Manuscript received August 30, 1976;. revised November 5, 1976.
The author is with the Centre Nrmonal d’Etudes des T616com-

munications, 22301 Lannion, France.

photodetector, and it is proportional to the optical power.

Then the fiber must be linear in terms of power. Some
aspects of this linearity have already been studied [1], [2].

Itmaybe obtained by using an incoherent source of spectral

width Av when the modulation frequencies are quite lower

than Av [1].

A modal calculation of the impulse and frequency power

responses, when there is no mode coupling, is proposed

(Section III). But before exposing our results, we

justify the validity of such a method (Section II).

II. Do DIFFERENT MODES CARRY INDEPENDENT

CONTRIBUTIONS TO THE GUIDED POWER?

must

It is commonly assumed that the answer is positive.

Since powers of unmodulated modes are independent in

case of lossless guides only, we shall consider our fiber as a
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lossless guide (which actually is a very good approximation).

In order to have a simple theory, we shall neglect mode

coupling.

We shall call VOthe center frequency of the light source.

At any frequency v, we may define normal modes (k), with

~~ as propagation constant, and (e,,A,) as electric and mag-

netic transverse components; e~ is real; k~ and ~~ are real

or imaginary; these components depend on frequency with

e~(– v) = e~(v), h~( – v) = h~, and ~~( – v) = – pk(v).

The orthogonality relation is [3]

{ek x h,” “u} = N,d,k. (1)

({. ..} is the integration over the cross section; u is the unit

vector along the propagation axis (z axis): NP is the normal-

ization constant, equal to unity for propagating modes.)

We shall denote ~ko, eke, h~o, ~. “ the quantities related to

the mode (k) at the frequency V..

The power guided by the fiber at the abscissa z is

P={ E~x H~”u) (2)

where ET, H~ are the transverse components of the field at z.

They are real quantities, and their general expressions are

(~)=~: k (e:)exp’(2nvt-pkz)+cc ‘3)dv ~ ‘tk(v) h

where the modal amplitudes t~(v) are independent from z

since we assumed no mode coupling. In order to simplify

the following development, we shall only deal with forward

fields, i.e., we limit the summation ~k to forward modes.

At first sight, (3) does not lead to a simple expression of

the power. The contributions of the individual modes are

not clear before one notices that the modal amplitudes can

be neglected everywhere except in a narrow frequency range

centered on Vo, where one may likely ignore the variations

of (e~,hk) and replace them by (eko,hko). Before using this

approximation, we may still be rigorous and expand the

guided field in terms of modes (eko,h~o):

ET = ~ ck’(z,t)e~” + C.C. H~ = ~ c:(z,t)h~o -t- C.C. (4a)
k

with

c exp i (2Tcvt – ~pz ) (4b)

JNkO*Ck” = mdv ~ {eko* x h “ U}<p(V)
P

o P

‘ exp i (2zvt – /3Pz), (4c)

The properties of modal functions and the orthogonality

relation allow us to write the power as

P = Re ~ (ck’c:*Nk t ck’ck’’Nk). (5)
k

This relation seems to demonstrate the separate contri-

butions of the different modes to the power. But it does not,

since, from (4b) and (4c), the (ck’) and (c~”) are related to all

the modes at the same time.

The aforementioned approximation consists of putting

(ep,h,) = (e,”,hpo) in (4), which leads to

J
m

Ckr = c~” =’c~= tk(v) exP i(2~Vt – Pkz) dv. (6)
o

Then, ck’ and c: are related to the mode (k) only and

the mode powers are independent. In order to evaluate the

accuracy of this approximation, we made a rough calculation

of the errors done on c~’ and Ck” (Appendix A). We found

where ~v is the width of the domain in which the mode (k)

is significantly excited (practically, two or three times the

spectrum width Av) and where v+ and Vg are the Phase

velocity and the group velocity, respectively. The ratio

Av/vo is rather small for light sources, though not always

very small (3. 10- 3–3. 10-5 for GaAs laser diodes; but only

3.10-2 for LED). The second term (1 – Vb/Vg) is small for

usual fibers, where there is a little difference between the

core refractive index izl and the cladding index n2. For

instance, with parabolic graded index fibers, v~ is c/nl and

O. varies from c/n ~ to c/n2 [4] and then

Roughly, this ratio is 10-2 in usual fibers. One obtains

similar results in step index fibers. Then we conclude that

in practical cases, we may replace ck’ and c~” by ck with a

high level of accuracy and thus, the modulated modes are

independent in” power.

III. CALCULATION OF THE IMPULSE AND FREQUENCY

POWER RESPONSES

We may then calculate the response functions by adding

the response functions of individual modes. We write the

input field in mode (k) delivered by a modulated incoherent

source as

(E,H) = kf(t)j(t)(t?k”,h~o) (8)

where M(t) is a certain function corresponding to the

modulation and ~(t) is a random stationary function de-

scribing the source. It is possible to obtain the ~k and the

propagating power directly from (8) and (6.), but we prefer

to expose a simpler derivation. The propagating field is a

linear function of the input field (8):

J
+02

Ck(z,t ) = lk(t – z)lf(~)f(z) d~ (9)
–m

where 1, is the impulse field response over the length z.

From (6), it is the Fourier transform of exp – i~k(v)z. With

an incoherent source, the measured power is the random

average

(ckz) =
JJ

Zk(t – ~)zk(t – ‘t + @kf(~)~(~ – 6)

“ (j(~)~(~ – 0)) dr d6.
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There appears the correlation function r(f?) of ~(t), the

Fourier transform of which is the energy spectrum g(v) of

the source. If the modulation frequencies are quite smaller

than the spectral width Av of the source, M(7 – 0) remains

practically equal to M(7) in the whole domain where r(e)

is not negligible.

That yields

J
+03

(Ck’) = Lk(t – Z)Pin(T) ch (lo)
—w

where Pin = M(~)2<f2) is the input power and where Lk is

the impulse power response

J
+W

L~(t) = ~ lk(t) l~(t – o)r(q do.
r(o) _~

(11)

The frequency power response is the Fourier transform of

(11):

JL:(v) = -!- +m
r(o) _~

g(v’) exp – i [~~(v’) – ~~(v’ - V)]Z dv’

(12)

and another form of(11) is

s exp i [2zvt – (/?~(v;) – ~~(v’ – v))z] dv dv’. (13)

As the spectrum function is nearly always zero except

around v = +- VO,these integrals may be calculated using a

Taylor expansion of B(v) near VO.The details of the calcula-

tion are in Appendix B. Hereafter, the simpler results are

given. The frequency response may be written

()Lkt(v) = cos (2z2flk’’v2z) exp – iz ~ G(2rcj?k’’vz) (14

k

where ~~” = d2j?~/dco2 at v = VO, Vk is the group velocity

at v = VO, and where G(O) is the complex envelope of the

correlation function (see B13 and B14). The expression (14)

is valid when

Z >> ZO = (127c/?O’’vOAv3)–‘/2. (15)

With longer fibers such as

z > Z1 = 10/(~~’’Av2) (16)

the frequency response becomes simpler:

L~’(v) = exp – iz ~ G(2n~~’’vz) (17)
k

and it is associated to the following impulse response:

Lk(t) = --J-- ~ ( t–z/vk
gvo+ ) (18)

7cl~k’flz r(o) 27cpk”z .

within less than l-percent error. The expression of the

impulse response corresponding to (14) and (15) is much

more complex (Appendix B).

The form (18) has already been proposed by previous

workers, without demonstration, on the basis of an intuitive

interpretation [1]. Condition (16) shows its use is not always

possible.

Table I gives the values of ZO and ZI for different kinds of

sources, characterized by their wavelength spectrum width

Al, for a central wavelength of 0.85pm, and for silica fibers

with /l” m 0.510– 25 m– ~sz [5]. The third line is the spectrum

width Av in gigahertz: The frequency modulation must be

quite smaller than Av so that the linear theory is valid.

For a l-km-long fiber, we may use the simple expression

(18) only if AA >30 ~. However, when the spectrum is a

set of several lines of width 8A (as it is often the case for

GaAs lasers, with 61 = 3 ~ or less), we must take the

value of ZI corresponding to AA = 81. The value ZI =

104 m for AA = 3 ~ means a 10-percent error with our

l-km-long fiber.

The validity of the more complex expression (14) is more

extended. However, practically, we must have z > 100zO,

and even this expression must not be employed for very

pure sources such as some DFB lasers except in case of

very long fibers. But neglecting the mode coupling on such

lengths is not possible, whatever its origin may be: defects

of the fiber or connections between partial links.

Finally, we come to the responses of the whole fiber.

If we call pk the fraction of the total input power which is

launched in the kth mode (~ p~ = 1), the total responses

are

L(t) = ~ pkLk(t) Or L’(v) = ~ pkL,’(v) (19)

which may be approximated

or

L.’(v) = ~ pk exp – iz .2; (20)
k k

when the temporal details of scale 27c/Y’Avz are neglected.

This well-known result is more usually established ignoring

the incoherence of the source and assuming the conclusions

of Section 11, i.e., the modulated modes are independent in

power.

If we assume that all the modes are associated with the

same spectrum function g(v), we may simply connect the

actual responses (19) with the approximate ones (20). As all

the fl~ are nearly equal and may be reduced to the part /3”

due to the only material dispersion effect [5], we may write

L’(v) = La’(v) Go(v) or L(t) = L@(t) * go

(21)
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with as usual in practical fibers [5]. Then one can define a mode

(COS<2T@’’V2Z)G(2@’’VZ),
impedance z~ (equal to cov/fl~ for TE modes or fl~/ow for

if z }> ZO
‘22a) TM modes) such as h~ = u x e~/z~ and, for free modesGO(V) =

G(2@’vz), ifz>zl
‘22b) (e, real and N, = {e,’/z,} = 1),

and if z > ZI

go(t) . ._!__ -__!_
7clylz r(o) “(v” ‘Z&2) ’23) ‘kke(v-v”)(g~) ‘+’- ‘“)(+(~)ekj;

W. CONCLUSION The mode impedance is constant over the cross section for

We have studied some aspects of the theory of the power TE modes; we may neglect its variations for TM modes.

in optical fibers, in the case of modulated waves. As in the Then

case of steady waves, the normal modes keep being inde-

pendent in power, but only because they m-e usually Akt a ~ (v – Vo) -!- ~~ {e~02/zk} = ~ -
)

;~pkl(; .

excited in a narrow spectrum in fibers with low dispersion; Zk av

there might be some trouble with LED in glass fibers (A5)

without cladding.

With incoherent sources, it was understood that the

output power is a linear function of the input power when

the modulation frequency remains below the spectrum

width. Then, it becomes possible to calculate the impulse

response and the frequency response as a summation over

the normal modes. We did assuming no mode ccmpling; we

found some classical results and we proved some intuitive

ones. We pointed out their validity conditions and we

showed how to correct them in more general conditions.

APPENDIX A

We may write

One obtains c~ by changing xi~~ into 1 in (A4). Thus the

upper limit of Akk in the domain of existence of ~~ gives the

order of magnitude of the error

which is equivalent to (7) in the main text.

APPENDIX B

With F(v,v’) = exp – iz[~(v’) – /?(v’ – v)] (we omit

the subscript k for simplicity) the frequency response may

be written as follows:

Ck’ ‘Ck= Jmdv ~ APk&Pexp i(2zvt – /?Pz) (Al)
J

qy) . -_!_. “ g(v’)[F(v,v’) + F(V, –v’)] dv’. (Bl)
o P r(o) o

with We assume that v and u = v’ - V. are small enough to

AP~ = [{eP x fi~O* “ u} – {epo x hkO* . u} ]/Nk”. allow the use of limited Taylor expansions of ~(v’) and

~A2) /3(v’ - v):

In the case of metallic waveguides, the space coordinates
F(v,v’) = exp – iz[2nflo’v + 4n2/30”uv – 2n2j30”v2 + . “ . ]

and the frequency are separated variables in the modal field (B2)

components and the APk are rigorously zero. For our dielec- F(v, –v’) = exp iz[j3(v’) – /3(v + v’)]
tric waveguides, we have Apk = O only in the zeroth-order

approximation where the variations of the eP Ilear V. are = exp -- iz[2r@o’v + 4n2~o”uv i- 27r2/lo”v2 + . ..]

neglected. In the first-order approximation, we c)btain (B3)

APk = (v – vo){8eP0/8v x lZkO* “ u}/Nka’. (A3) where ~o’ and /?.” are the derivatives of B with respect to

It is difficult to discuss the behavior of such an expression

without the help of intuition. Since 8eP0/8V and ePOhave

the same spatial frequencies, we may think that the Apk

decrease when one increases the difference between the

spatial frequencies of modes (p) and (k); inversely, we get

a maximum for p = k. We checked these predictions in the

case of the dielectric plate waveguide. Thus, when the

modal amplitudes do not strongly change from one mode

to the next one, we may limit the summation xl, in (A 1) to

the modes near the mode (k). At the limit, considering only

P = k, we should obtain a valuable order of magnitude.
Now, we assume that our modes are transverse. This

hypothesis is a good approximation whenever there is little

change from the core refractive index to the cladding index,

co=2rcv, atv=vo

The cutoff frequency v~ of L’(v) roughly is the frequency

for which the phase of the integrand in (Bl) is changed by

2n when v’ sweeps the width Av of the spectrum:

4n2/30’’Avzv~ N 2n. (B4)

The second-order Taylor expansion is valid only if the

third-order terms remain negligible for v = v~ and u =

Av/2. An examination of these terms leads to the condition

Z2 >> (6)o’’3Av3/po’”)- 1 (135)

or, more roughly (with PO’” N ~o’’/2nvo),

22 >> Z02 = (127c~o’’2voAv3)- ‘. (B6)
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When this condition is satisfied, the approximate expression

of Lt(v) derived from the combination of (Bl), (B2), and

(B3), is valid throughout the frequency domain Ivl < v~.

Out of this domain, it yields rapidly negligible values as the

exact expression does. Thus it may be used in the Fourier

transform giving L(t) from L’(v)

L(t) = ~ H
+COmdv’ dv

r(o) ~ _~

[(“ exp 2ixv t – ~ – 2T@O”ZU
)1

Cos (27C2po’’v2z)g(v’)
o

check the accuracy of (B1 O). One finds that the highest

absolute error occurs at VI = V. (i.e., the maximum of the

Gaussian function) and that it corresponds to a relative

error smaller than 10- n if

z > Z1 = 10”/(z2flo’’Av2). (Bll)

We also may have simple expressions for the frequency

response. We obtain from (Bl), (B2), and (B3)

()L.’(v) = cos (2n2~o’’v2z) exp – iz 2; G(27c/?o’’vz)
o

(B12)

where V. is the group velocity. We can integrate over v

exactly:
where G(x) is derived from the spectrum function:

L(t) =
2

r(o)(27rlpo’’1z )’/2

“J [

co
sin 2n2 Iflo”lz

o

JG(x) =~ m
r(o) o

exp – 2i7cx(v’ – vo)g(v’) dv’. (B13)

( )1

This function is related to the correlation function by
t–z/vo_u2+g

2r’c/30”z 4 17(tl) = r(0) Re [G(O) exp – 2ircvo6]. (B14)

(B7) It is generally coniplex valued, except if g(v) is symmetrical“ g(v’) dv’. . .

This result is valid as long as z >> Zo, where Z. is given by
with respect to Vo. It starts from G(0) = 1, and its modulus

is a nonoscillating decreasing function with a characteristic
(B5) or (B6), But if z is even larger, one may use the identity time ~/Av

(in terms of distribution)
Expression (Bl 1) corresponds to (B6); it holds when the

Al2>
lim —

same condition z >> Z. is satisfied, With the more stringent
sin (or cos) px2 = d(x). (B8) condition z > z,, it may be simplified, since for the cutoff

p-m rc
frequency v~ given by (B3) one has

Then with

t – z/vo
Vl=vo+

27c/?o”z

2rc2/?o’’v2z = (n/2)(z~/z)lo-” <<1
(B9)

which allows one to write simply

we obtain

[

o, ifvl < 0

L(t) = 1 $7(V1), ifvl > 0. (B1O)

mz ~
[11

We still have to” state the conditions of validity of this --

very simple result. The spectrum function g(v) is often [q

considered as a Gaussian function like exp –4(v – vo)2/Av2
for v >0 (Av being the l/e width), or a sum of such 131

functions.

For all of them, we always have Av cc Vo, and then, the
[4]

integration in (B7) may be carried from – co to + m,

leading to an exact analytical result which allows one to
[5]

L’(v) = G(2@?o’’vz) exp – iz ~ . (B15)
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