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nonreciprocal optical IC devices possessing various func-
tions would be constructed by using the perturbed systems
treated in the present paper.

V. CoNcLUSION

The coupled optical waveguides, consisting of two iso-
tropic dielectric slab waveguides coupled through aniso-
tropic or gyrotropic materials inserted between them, have
been treated theoretically in detail. It has been found that
the AL- and AP-perturbation systems show the reciprocal
mode conversion, while the GL- and GP-perturbation sys-
tems possess the property of nonreciprocal mode conversion,
and the GE-perturbation system causes nonreciprocal phase
shift for the TM, mode, whereas the AFE-perturbation
system shows no influence upon both TE, and TM, modes.
As an example of application of these perturbed systems,
the nonreciprocal optical IC mode converter has been pro-
posed, and the numerical design example of the optical IC
circulator has been given. This circulator requires no mode
separators at both input and output ports. This circulator
can also be utilized as an isolator without using mode filters
at both input and output ports. In order to realize these
devices, the progress of the fabrication techniques, together
with the development of magnetooptic materials which
possess a large Faraday effect, is required.
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Linear Power Responses of an Optical Fiber

CHARLES VASSALLO

Abstract—1It is known that an optical fiber behaves linearly in terms of
power when the modulation frequency is smaller than the spectrum width
of the light source. In order to calculate the impulse or frequency power
responses with a modal calculation, it is shown that the powers carried
by the different modes are independent in usual cases. Different formulas
are proposed for the linear responses when there is no mode coupling,
and the corresponding validity conditions are given.

1. INTRODUCTION

DESIRABLE charaeteristic of any transmission
system is the linear relation between the output and
input variables. In the case of transmission through optical
fibers, the output variable is the current generated by the
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photodetector, and it is proportional to the optical power.
Then the fiber must be linear in terms of power. Some
aspects of this linearity have already been studied [1], [2].
It may be obtained by using an incoherent source of spectral
width Av when the modulation frequencies are quite lower
than Av [1].

A modal calculation of the impulse and frequency power
responses, when there is no mode coupling, is proposed
(Section IIT). But before exposing our results, we must
justify the validity of such a method (Section II).

II. Do D1FreRENT MODES CARRY INDEPENDENT
CONTRIBUTIONS TO THE GUIDED POWER?

It is commonly assumed that the answer is positive.
Since powers of unmodulated modes are independent in
case of lossless guides only, we shall consider our fiber as a
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lossless guide (which actually is a very good approximation).
In order to have a simple theory, we shall neglect mode
coupling.

We shall call v, the center frequency of the light source.
At any frequency v, we may define normal modes (k), with
B as propagation constant, and (e,,h,) as electric and mag-
netic transverse components; e, is real; &, and f3, are real
or imaginary; these components depend on frequency with
e(—v) = &), l(—v) = by, and B(—v) = —Bi(v).

The orthogonality relation is [3]

{ex x h,* - u} = N,6,. ()

({ - - - } is the integration over the cross section; u is the unit
vector along the propagation axis (z axis); N, is the normal-
ization constant, equal to unity for propagating modes.)
We shall denote B,°, ¢,°, 1,°, - - - the quantities related to
the mode (k) at the frequency v,.
The power guided by the fiber at the abscissa z is

P = {Er x Hy-u 2)

where E;, Hy are the transverse components of the field at z.
They are real quantities, and their general expressions are

(5) B f AR (Zf) xp iQmvt = fiz) + e (3)

where the modal amplitudes £,(v) are independent from z
since we assumed no mode coupling. In order to simplify
the following development, we shall only deal with forward
fields, i.e., we limit the summation Y, to forward modes.

At first sight, (3) does not lead to a simple expression of
the power. The contributions of the individual modes are
not clear before one notices that the modal amplitudes can
be neglected everywhere except in a narrow frequency range
centered on v,, where one may likely ignore the variations
of (e,h,) and replace them by (e,°,#,°). Before using this
approximation, we may still be rigorous and expand the
guided field in terms of modes (¢,°,4,%):

Er =Y ¢/(zt)el + cc. Hy =Y ¢/ (z,t)l° + cc. (4a)
%

with

N,%, = fw dvy {e, x B°* - u}é,(v)

0 p
~exp i(@mvt — B,z) (4b)
NS¢ = va dv Y {e°* x h,- u}é,(v)
0 P
cexp i(2nvt — B,z). (4o)

The properties of modal functions and the orthogonality
relation allow us to write the power as

P = RC Z (Cklck”*Nk i Cklck”Nk)‘ (5)
k

This relation seems to demonstrate the separate contri-
butions of the different modes to the power. But it does not,
since, from (4b) and (4c), the (¢,) and (¢,”) are related to all
the modes at the same time.
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The aforementioned approximation consists of putting
(e,h,) = (e,%h,°) in (4), which leads to

o ¢~ = f Ev) exp iQ2nvt — Biz) dv. (6)
o

Then, ¢’ and ¢;” are related to the mode (k) only and
the mode powers are independent. In order to evaluate the
accuracy of this approximation, we made a rough calculation
of the errors done on ¢;’ and ¢,” (Appendix A). We found

~ (1 — U_¢) %)
4v, v,

where 6v is the width of the domain in which the mode (k)
is significantly excited (practically, two or three times the
spectrum width Av) and where v, and v, are the phase
velocity and the group velocity, respectively. The ratio
Av/v, is rather small for light sources, though not always
very small (3.1073-3.107% for GaAs laser diodes; but only
3.1072 for LED). The second term (1 — v,/v,) is small for
usual fibers, where there is a little difference between the
core refractive index n, and the cladding index n,. For
instance, with parabolic graded index fibers, v, is ¢/n; and
v varies from c/ny to ¢/n, [4] and then

ckl - Ck ck” - Ck

Cy Cy

1 - Y M

v

<

g ny

Roughly, this ratio is 1072 in usual fibers. One obtains
similar results in step index fibers. Then we conclude that
in practical cases, we may replace ¢’ and ¢;” by ¢, with a
high level of accuracy and thus, the modulated modes are
independent in power.

II1. CALCULATION OF THE IMPULSE AND FREQUENCY
POWER RESPONSES

We may then calculate the response functions by adding
the response functions of individual modes. We write the
input field in mode (k) delivered by a modulated incoherent
source as ’ ’

(EH) = M(1)f(£)(eh") ©)

where M(¢) is a certain function corresponding to the
modulation and f(¢) is-a random stationary function de-
scribing the source. It is possible to obtain the &, and the
propagating power directly from (8) and (6), but we prefer
to expose a simpler derivation. The propagating field is a
linear function of the input field (8):

alzt) = f "t = IM@F@) do ©)

where /, is the impulse field response over the length z.
From (6), it is the Fourier transform of exp — if,(v)z. With
an incoherent source, the measured power is the random
average

e’y = fflk(t -t — 1+ OMEME — 0)
L fQ)f(x — 0)) du db.
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There appears the correlation function T'(6) of f(¢), the
Fourier transform of which is the energy spectrum g(v) of
the source. If the modulation frequencies are quite smaller
than the spectral width Av of the source, M(t — 0) remains
practically equal to M(7) in the whole domain where I'(0)
is not negligible.
That yields
+

@y = Le-or@a a0
where P, = M((1)2{f?> is the input power and where L, is
the impulse power response

Ly(t) = — (11)

I“()

The frequency power response is the Fourier transform of

(11):

10 f I(t — 6)T(0) do.

+ o0

L/(v) = 1“(0) g(V') exp — i[B() — By — v)]z dv'
(12)
and another form of (11) is
Lo = = [ o)
- exp i[2avt — (B (v)) — BV — v)z] dvdv'. (13)

As the spectrum function is nearly always zero except
around v = =v,, these integrals may be calculated using a
Taylor expansion of f(v) near v,. The details of the calcula-
tion are in Appendix B. Hereafter, the simpler resuits are
given. The frequency response may be written

L/}(v) = cos (2n*B,"v*z) exp (—zz 2—V——) GQ2npvz) (14)
k
where B, = d*B/dw® at v = v,, V, is the group velocity
at v = vy, and where G(0) is the complex envelope of the
correlation function (see B13 and B14). The expression (14)
is valid when

z» 7y = (128" voAv) 12, (15)
With longer fibers such as
z > z; = 10/(B,"Av?) (16)
the frequency response becomes simpler:
: L'(v) = exp — iz %’ G(Q2np,"vz) a7
k
and it is associated to the following impulse response:
1 1 t - z/Vk)
Lft) = == —= g (Vo + 18
O = T ( ° T oz {®

within less than 1-percent error. The expression of the
impulse response corresponding to (14) and (15) is much
more complex (Appendix B).

The form (18) has already been proposed by previous

workers, without demonstration, on the basis of an intuitive
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TABLE 1
A A (A) 300 30 3 03
24 {m) 2107 61072 2 60
z,({m) 1 10? 1* 105
Av (Ghz)} | 104 1° 10? 10

interpretation [17. Condition (16) shows its use is not always

. possible.

Table I gives the values of z, and z; for different kinds of
sources, characterized by their wavelength spectrum width
AX, for a central wavelength of 0.85um, and for silica fibers
with §” ~ 0.51072° m™*s? [5]. The third line is the spectrum
width Av in gigahertz: The frequency modulation must be
quite smaller than Av so that the linear theory is valid.

For a 1-km-long fiber, we may use the simple expression
(18) only if AL > 30 A. However, when the spectrum is a
set of several lines of width 61 (as it is often the case for
GaAs lasers, with 64 ~ 3 A or less), we must take the
value of z, corresponding to AL = 4. The value z, =
10* m for AL = 3 A means a 10-percent error with our
1-km-long fiber.

The validity of the more complex expression (14) is more
extended. However, practically, we must have z > 100z,
and even this expression must not be employed for very
pure sources such as some DFB lasers except in case of
very long fibers. But neglecting the mode coupling on such
lengths is not possible, whatever its origin may be: defects
of the fiber or connections between partial links.

Finally, we come to the responses of the whole fiber.
If we call p, the fraction of the total input power which is
launched in the kth mode (3 p, = 1), the total responses
are

L#) = Y pLi(t)  or  L'(y) = Y pL'(v) (19)
which may be approximated
L(t) = st - i)
(t) Z D ( V.
or
Li(v) = Y p.exp — iz 2my 20)
k Vi

when the temporal details of scale 27f8”Avz are neglected.
This well-known result is more usually established ignoring
the incoherence of the source and assuming the conclusions
of Section 11, i.e., the modulated modes are independent in
power.

If we assume that all the modes are associated with the
same spectrum function g(v), we may simply connect the
actual responses (19) with the approximate ones (20). As all
the B," are nearly equal and may be reduced to the part 5’
due to the only material dispersion effect [51, we may write

L'(v) = L/(MGo(v)  or  L(t) = L,t) * go

@1
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with
Golv) = cos 2nf"v:2)G(2np"vz), if z>» z, (22a)
o) =\ Gnrpva), ifz > 2, (22b)
and if z > z,
| 1 t
1) = —— ER——— 23
golt) = T r(o)g ( o 2nﬂ"z) (23)

IV. ConcLusioN

We have studied some aspects of the theory of the power
in optical fibers, in the case of modulated waves. As in the
case of steady waves, the normal modes keep being inde-
pendent in power, but only because they are usually
excited in a narrow spectrum in fibers with low dispersion;
there might be some trouble with LED in glass fibers
without cladding.

With incoherent sources, it was understood that the
output power is a linear function of the input power when
the modulation frequency remains below the spectrum
width. Then, it becomes possible to calculate the impulse
response and the frequency response as a summation over
the normal modes. We did assuming no mode coupling; we
found some classical results and we proved some intuitive
ones. We pointed out their validity conditions and we
showed how to correct them in more general conditions.

APPENDIX A
We may write

G — ¢ = f dv Z Ay, exp iQ2nvt — f,z) (Al)
0 p

with

Ay = [{e, x B** -u} — {e,° x B°* - u}]/N°.

(A2)

In the case of metallic waveguides, the space coordinates
and the frequency are separated variables in the modal field
components and the 4, are rigorously zero. For our dielec-
tric waveguides, we have 4,, = 0 only in the zeroth-order
approximation where the variations of the e, near v, are
neglected. In the first-order approximation, we obtain

A = (v — vo){0e,°0v x BS* - u}/N,°. (A3)

It is difficult to discuss the behavior of such an expression
without the help of intuition. Since 6ep°/6v and ep° have
the same spatial frequencies, we may think that the 4,
decrease when one increases the difference between the
spatial frequencies of modes (p) and (k); inversely, we get
a maximum for p = k. We checked these predictions in the
case of the dielectric plate waveguide. Thus, when the
modal amplitudes do not strongly change from one mode
to the next one, we may limit the summation Y, in (Al) to
the modes near the mode (k). At the limit, considering only
p = k, we should obtain a valuable order of magnitude.

Now, we assume that our modes are transverse. This
hypothesis is a good approximation whenever there is little
change from the core refractive index to the cladding index,

575

as usual in practical fibers [5]. Then one can define a mode
impedance z, (equal to wu/f, for TE modes or f,/we for
TM modes) such as k, = u X ¢z, and, for free modes
(¢, real and N, = {e2/z,} = 1),

s (8] Lo (1))

v z v \z,

(A4)

The mode impedance is constant over the cross section for
TE modes; we may neglect its variations for TM modes.

Then
1 - vy, O (v)
3 Vo ks, B.

(A5)

]ak{ 02/}

1
Akkﬁ‘?:(\’ -

One obtains ¢, by changing A, into 1 in (A4). Thus the
upper limit of A, in the domain of existence of £, gives the
order of magnitude of the error
0 ( v )
B > .

o - ¢ N 1 5v
which is equivalent to (7) in the main text.

(A6)

Cx 4 Vo

APPENDIX B
With F(y,v') = exp — iz[B(v') — (V' — v)] (we omit
the subscript k& for simplicity) the frequency response may
be written as follows:
L(y) =

g(v WF,v) + F(v,—v)]dv. (Bl)

r(())

We assume that v and u = v/ — v, are small enough to
allow the use of limited Taylor expansions of B(v') and

B = v):

F(v) = exp — iz[2nfo'v + 4n?Bo"uv — 2n°By"v? + -+ -]
(B2)

F(v,~v) =expiz[(v') — B(v + V)]
—iz[27Bo'v + 4nPBo"uv + 272"V 4+ - -]

(B3)

i

exp

where f,’ and B,” are the derivatives of § with respect to
= 2mv,atv = vg
The cutoff frequency v,, of L'(v) roughly is the frequency
for which the phase of the integrand in (B1) is changed by
2 when v' sweeps the width Av of the spectrum:

4n*By"Avzv,, ~ 2m. (B4)

The second-order Taylor expansion is valid only if the
third-order terms remain negligible for v = v, and u =
Av/2. An examination of these terms leads to the condition

ZZ > (Gﬁo"sAv3/ﬁ0'")_1 (BS)
or, more roughly (with B, ~ Bg"[2nvy),
2% » zy% = (12nB,"*veAv?) 1. (B6)
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When this condition is satisfied, the approximate expression
of L'(v) derived from the combination of (Bl1), (B2), and
(B3), is valid throughout the frequency domain |v| < v,,.
Out of this domain, it yields rapidly negligible values as the
exact expression does. Thus it may be used in the Fourier
transform giving L(¢) from L'(v)

10 =5 [ [

- exp [Zinv (t — 5— — Znﬁo”zu)] cos (2n2By"v?z)g(v')
(4]

where V, is the group velocity. We can integrate over v
exactly:
____ 2
T(0)(2x|B,"2)"/*
t — z/V,

0 2 n
f sin [27t2|/30”lz ( - u) + —]

0 2nBs"z 4
- g(v) dv.

This result is valid as long as z >» z,, where z, is given by
(B5) or (B6). But if z is even larger, one may use the identity
(in terms of distribution)

L) =

(B7)

lim A/ =L sin (or cos) px? = §(x). (B3)
P>
Then with
t — Z/Vo
= — B9
vy ="V + 27By"z (B9)
we obtain
0, ifv; <0
L(t) = 1 g(vy), ifvy>0. (B10)
7|Bo"|z T(0)

We still have to state the conditions of validity of this
very simple result. The spectrum function g(v) is often
considered as a Gaussian function likeexp —4(v — vo)?/Av?
for v > 0 (Av being the l/e width), or a sum of such
functions.

For all of them, we always have Av « vy, and then, the
integration in (B7) may be carried from —oo to + oo,
leading to an exact analytical result which allows one to
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check the accuracy of (B10). One finds that the highest
absolute error occurs at v, = v, (i.e., the maximum of the
Gaussian function) and that it corresponds to a relative
error smaller than 107" if

z > z; = 107(72Bo"Av?). (B11)

We also may have simple expressions for the frequency
response. We obtain from (B1), (B2), and (B3)

L'(v) = cos (2n?B,"v?z) exp (—zz 27) G(2nfy"vz)

0

(B12)

where G(x) is derived from the spectrum function:
G(x) = F(ZO)J exp — 2inx(v' — vg)g(v') dv'. (B13)

This function is related to the correlation function by
I'(6) = T(0) Re [G(®) exp — 2inv,0].  (Bl4)

It is generally comiplex valued, except if g(v) is symmetrical
with respect to v,. It starts from G(0) = 1, and its modulus
is a nonosciilating decreasing function with a characteristic
time 1/Av.

Expression (B11) corresponds to (B6); it holds when the
same condition z > z, is satisfied. With the more stringent
condition z > z,, it may be simplified, since for the cutoff
frequency v,, given by (B3) one has

2n2By"v’z = (n2)(21/2)107" < 1
which allows one to write simply
2nv

G(Q2rBy"vz) exp — iz — .
Vo

L'(v) = (B15)
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